Enabling Highly Efficient Batched Matrix Multiplications on SW26010 Many-core Processor
نویسندگان
چکیده
منابع مشابه
Implementing Matrix Multiplications on the Multi-Core CPU Architectures
Recent commercial microprocessors are concentrating on the multi-core CPU architectures, while most parallel and/or distributed computing methods focus on the multi-CPU architectures. Therefore, there are needs to analyze and adapt traditional parallel algorithms for the new multi-core environments. In this paper, we use matrix multiplications as the target problem, and implemented it using var...
متن کاملProgramming many-core architectures - a case study: dense matrix computations on the Intel SCC processor
A message passing, distributed-memory parallel computer on a chip is one possible design for future, many-core architectures. We discuss initial experiences with the Intel Single-chip Cloud Computer research processor, which is a prototype architecture that incorporates 48 cores on a single die that can communicate via a small, shared, on-die buffer. The experiment is to port a state-of-the-art...
متن کاملUltra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملSolving Matrix Equations on Multi-Core and Many-Core Architectures
We address the numerical solution of Lyapunov, algebraic and differential Riccati equations, via the matrix sign function, on platforms equipped with general-purpose multicore processors and, optionally, one or more graphics processing units (GPUs). In particular, we review the solvers for these equations, as well as the underlying methods, analyze their concurrency and scalability and provide ...
متن کاملEfficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Architecture and Code Optimization
سال: 2020
ISSN: 1544-3566,1544-3973
DOI: 10.1145/3378176